
21.DC_Motor_Control

Introduction
In this lesson, we will learn to how to use L293D to drive a DC motor and make it

rotate clockwise and counterclockwise. Since the DC Motor needs a larger current, for

safety purpose, here we use the Power Supply Module to supply motors.

Hardware Required
 1 * Raspberry Pi

 1 * T-Extension Board

 1 * Power Module (with 9VPower Adapter or 9V battery and buckle)

 1 * 40-pin Cable

 1 * L293D

 Several Jumper Wires

 1 * Breadboard

 1 * DC Motor

Principle

L293D

This is a very practical chip that can independently control two DC motors. In this

experiment, just half of the chip is used. Since most pins on the right side of the chip

are used to control the second motor, they will not be used here.

L293D has two pins (Vcc1 and Vcc2) for power supply. Vcc2 is used to supply power

for the motor, while Vcc1 to supply for the chip. Since a small-sized DC motor is

used here, connect both pins to +5V. If you use a high power motor, connect Vcc2 to

an external power supply. At the same time, the GND of L293D should be connected

to that of the RexQualis Uno board.

21.DC_Motor_Control

Breadboard Power Supply

The small DC motor is likely to use more power than an UNO R3 board digital output

can handle directly. If we tried to connect the motor straight to an UNO R3 board pin,

there is a good chance that it could damage the UNO R3 board. So we use a power

supply module provides power supply.

Product Specifications:

 Locking On/Off Switch

 LED Power Indicator

 Input voltage:6.5-9v(DC) via 5.5mm x 2.1mm plug

 Output voltage:3.3V/5V

 Maximum output current:700 mA

 Independent control rail output.0v, 3.3v, 5v to breadboard

 Output header pins for convenient external use

 Size:2.1 in x 1.4 in

 USB device connector on board to power external device

Setting up output voltage:

The left and right voltage output can be configured independently. To select the

output voltage, move jumper to the corresponding pins.

Note: power indicator LED and the breadboard power rails will not power on if both

jumpers are in the “OFF” position.

Important note:

3.3V5V

21.DC_Motor_Control

Make sure that you align the module correctly on the breadboard. The negative pin(-)

on module lines up with the blue line(-) on breadboard and that the positive pin(+)

lines up with the red line(+).Failure to do so could result in you accidently reversing

the power to your project

DCMotor Specifications

 Voltage：3-6V

 Main Size:length 25mm,thickness 15 mm,width 20mm

 Motor Shaft Length:9mm,Shaft Diameter 2mm

 Rated Voltage:3V

 Reference Current:0.35-0.4A

 3V Rotating Speed:13000ROM

Schematic Diagram
Plug the power supply module in breadboard, and insert the jumper cap to pin of 5V,

then it will output voltage of 5V. Connect pin 1 of L293D to GPIO22, and set it as

high level. Connect pin2 to GPIO27, and pin7 to GPIO17, then set one pin high, while

the other low. Thus you can change the motor’s rotation direction.

T-Board Name physical wiringPi BCM

GPIO17 Pin 11 0 17

GPIO27 Pin 13 2 27

GPIO22 Pin 15 3 22

21.DC_Motor_Control

Experimental Procedures

Step 1: Build the circuit.

Note: The power module can apply a 9V battery with the 9V Battery Buckle in the kit.

Insert the jumper cap of the power module into the 5V bus strips of the breadboard.

For C Language Users

Step 2: Get into the folder of the code.

cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starter_Kit/C/21.DC_Motor_Control

Step 3: Compile the code.

gcc 21.DC_Motor_Control.c -o DC_Motor_Control.out -lwiringPi

Step 4: Run the executable file above.

sudo ./DC_Motor_Control.out

As the code runs, the motor first rotates clockwise for 5s then stops for 5s, after that, it

rotates anticlockwise for 5s; subsequently, the motor stops for 5s. This series of

actions will be executed repeatedly.

21.DC_Motor_Control

Code

#include <wiringPi.h>

#include <stdio.h>

#define MotorPin1 0 //2A

#define MotorPin2 2 //1A

#define MotorEnable 3 //enable

//main control the L293SD

int main(void){

int i;

if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen

printf("setup wiringPi failed !");

return 1;

}

pinMode(MotorPin1, OUTPUT);

pinMode(MotorPin2, OUTPUT);

pinMode(MotorEnable, OUTPUT);

while(1){

printf("Clockwise\n");

digitalWrite(MotorEnable, HIGH);

digitalWrite(MotorPin1, HIGH);//2A is high

digitalWrite(MotorPin2, LOW);//1A is low

for(i=0;i<3;i++){

delay(1000); //delay time 1000

}

21.DC_Motor_Control

printf("Stop\n");

digitalWrite(MotorEnable, LOW); // not enable

for(i=0;i<3;i++){

delay(1000); //delay 10000

}

printf("Anti-clockwise\n");

digitalWrite(MotorEnable, HIGH); //enable

digitalWrite(MotorPin1, LOW); //2A is low

digitalWrite(MotorPin2, HIGH); //1A is high

for(i=0;i<3;i++){

delay(1000); //delay 1000

}

printf("Stop\n");

digitalWrite(MotorEnable, LOW); //not enable

for(i=0;i<3;i++){

delay(1000);

}

}

return 0;

}

Code Explanation

digitalWrite(MotorEnable, HIGH);

Enable the L239D.

digitalWrite(MotorPin1, LOW); //2A is low

digitalWrite(MotorPin2, HIGH); //1A is high

21.DC_Motor_Control

Set a high level for 2A(pin 7); since 1,2EN(pin 1) is in high level, 2Y will output

high level.

Set a low level for 1A, then 1Y will output low level, and the motor will rotate.

for(i=0;i<3;i++){

delay(1000); //delay 10000

}

this loop is to delay for 3*1000ms.

digitalWrite(MotorEnable, LOW);

If 1,2EN (pin1) is in low level, L293D does not work. Motor stops rotating.

digitalWrite(MotorPin1, LOW); //2A is low

digitalWrite(MotorPin2, HIGH); //1A is high

Reverse the current flow of the motor, then the motor will rotate reversely.

For Python Language Users

Step 2: Get into the folder of the code.

cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starter_Kit/Python

Step 3: Run.

sudo python3 21.DC_Motor_Control.py

As the code runs, the motor first rotates clockwise for 5s then stops for 5s, after that,it

rotates anticlockwise for 5s; subsequently, the motor stops for 5s. This series of

actions will be executed repeatedly.

Code

The code here is for Python3, if you need for Python2, please open the code with the

suffix py2 in the attachment.

#!/usr/bin/env python3

import RPi.GPIO as GPIO

import time

21.DC_Motor_Control

Set up pins

MotorPin1 = 17

MotorPin2 = 27

MotorEnable = 22

def setup():

Set the GPIO modes to BCM Numbering

GPIO.setmode(GPIO.BCM)

Set pins to output

GPIO.setup(MotorPin1, GPIO.OUT)

GPIO.setup(MotorPin2, GPIO.OUT)

GPIO.setup(MotorEnable, GPIO.OUT, initial=GPIO.LOW)

Define a motor function to spin the motor

direction should be

1(clockwise), 0(stop), -1(counterclockwise)

def motor(direction):

Clockwise

if direction == 1:

Set direction

GPIO.output(MotorPin1, GPIO.HIGH)

GPIO.output(MotorPin2, GPIO.LOW)

Enable the motor

GPIO.output(MotorEnable, GPIO.HIGH)

print ("Clockwise")

Counterclockwise

if direction == -1:

Set direction

21.DC_Motor_Control

GPIO.output(MotorPin1, GPIO.LOW)

GPIO.output(MotorPin2, GPIO.HIGH)

Enable the motor

GPIO.output(MotorEnable, GPIO.HIGH)

print ("Counterclockwise")

Stop

if direction == 0:

Disable the motor

GPIO.output(MotorEnable, GPIO.LOW)

print ("Stop")

def main():

Define a dictionary to make the script more readable

CW as clockwise, CCW as counterclockwise, STOP as stop

directions = {'CW': 1, 'CCW': -1, 'STOP': 0}

while True:

Clockwise

motor(directions['CW'])

time.sleep(5)

Stop

motor(directions['STOP'])

time.sleep(5)

Anticlockwise

motor(directions['CCW'])

time.sleep(5)

Stop

motor(directions['STOP'])

time.sleep(5)

21.DC_Motor_Control

def destroy():

Stop the motor

GPIO.output(MotorEnable, GPIO.LOW)

Release resource

GPIO.cleanup()

If run this script directly, do:

if __name__ == '__main__':

setup()

try:

main()

When 'Ctrl+C' is pressed, the program

destroy() will be executed.

except KeyboardInterrupt:

destroy()

Code Explanation

def motor(direction):

Clockwise

if direction == 1:

Set direction

GPIO.output(MotorPin1, GPIO.HIGH)

GPIO.output(MotorPin2, GPIO.LOW)

Enable the motor

GPIO.output(MotorEnable, GPIO.HIGH)

print ("Clockwise")

...

Create a function, motor() whose variable is direction. As the condition that

direction=1 is met, the motor rotates clockwise; when direction=-1, the motor rotates

21.DC_Motor_Control

anticlockwise; and under the condition that direction=0, it stops rotating.

def main():

Define a dictionary to make the script more readable

CW as clockwise, CCW as counterclockwise, STOP as stop

directions = {'CW': 1, 'CCW': -1, 'STOP': 0}

while True:

Clockwise

motor(directions['CW'])

time.sleep(5)

Stop

motor(directions['STOP'])

time.sleep(5)

Anticlockwise

motor(directions['CCW'])

time.sleep(5)

Stop

motor(directions['STOP'])

time.sleep(5)

In the main（）function, create an array, directions[], in which CW is equal to 1,

the value of CCW is -1, and the number 0 refers to Stop.

As the code runs, the motor first rotates clockwise for 5s then stop for 5s, after that,

it rotates anticlockwise for 5s; subsequently, the motor stops for 5s. This series

of actions will be executed repeatedly.

Now, you should see the motor blade rotating.

Phenomenon Picture

21.DC_Motor_Control

	Introduction
	In this lesson, we will learn to how to use L293D
	Hardware Required
	Principle
	Code Explanation
	digitalWrite(MotorEnable, HIGH);
	For Python Language Users

	Step 2: Get into the folder of the code.
	Step 3: Run.
	Code
	destroy()
	Code Explanation
	Create a function, motor() whose variable is direc
	Phenomenon Picture

